宋昀昊

                       宋昀昊(Yunhao Song)是河南理工大学软件22级在读本科生,正在攻读软件工程学士学位,软件设计师,商务英语高级笔译员,学者,从事机器学习与人工智能的研究。其代表作有《Wind Power Forecasting Based on Bidirectional LSTM Integrated with Chaos Enhancement Theory》与《Application of AutoML, YOLOv5, and YOLOv8 in brain MRI tumor image recognition》等EI论文。


人物简介

  宋昀昊,学者,河南理工大学软件2204班本科生,软件设计师,从事机器学习与计算机视觉等方面研究。

 

3图
宋昀昊日常生活

  宋昀昊的日常生活较为丰富,他的思想总是超前于潮流并不为世人所理解,比如他将眼罩当口罩等等。他最大的爱好是去旅行,喜欢无约无束的生活。

人物经历


答辩现场
答辩现场

2025年01月,宋昀昊带队作《在线订餐系统》项目答辩报告。宋昀昊在其中负责前端开发,部分后端开发,后端开发指导,系统对接等工作。



出版图书

Wind Power Forecasting Based on Bidirectional LSTM Integrated with Chaos Enhancement Theory
作者名称Yunhao Song
作品类别机器学习、时间序列预测
作品时间2025-05-22
Wind energy prediction is crucial for efficient management and dispatch of power systems, and accurate prediction can optimize the integration of renewable energy sources and can be a good solution for energy security. This study proposes a chaos-enhanced bi-directional LSTM model for wind power forecasting that incorporates chaotic signals from Lorentz attractors to enhance the feature representation of time series data and combines the powerful contextual information capturing capability of bi-directional LSTM. The goal of this research is to develop a model that outperforms traditional as well as current mainstream machine learning aspects of prediction methods. The method splices the generated slices of chaotic signals with the input sequences in the feature dimension and captures the forward and backward time dependencies using bi-directional LSTM, and finally feeds its output into the fully connected layer for final prediction. The experimental results show that the proposed model outperforms several current mainstream machine prediction models with a MAPE of only 0.5979% and an RMSE of 4.2, which demonstrates the effectiveness and superiority of the model in wind power prediction.
Application of AutoML, YOLOv5, and YOLOv8 in brain MRI tumor image recognition
作者名称Yunhao Song
作品类别计算机视觉、学科交叉
作品时间2025-04-18
With the rapid development of machine learning, particularly deep learning, the automatic recognition and classification of brain tumors have become a significant focus of research in medical image analysis. However, due to the complex morphology and indistinct boundaries of brain tumors, traditional manual annotation methods are time-consuming and prone to errors, highlighting the need for more intelligent diagnostic tools. This study compares the effectiveness of applying AutoML and YOLO series models (YOLOv5 and YOLOv8) in brain tumor recognition, aiming to evaluate the performance of each model and provide insights for improving diagnostic accuracy and efficiency. The results indicate that YOLOv8 outperforms the other models in terms of precision, recall, and F1-score, making it highly suitable for high-precision applications. YOLOv5, with its lightweight design, offers advantages in inference speed. While EasyDL performs slightly lower in certain metrics, its high precision and ease of use make it a competitive option in specific scenarios.The main contribution of this paper lies in not only verifying the high feasibility of the emerging AutoML technology with weaker requirements on expert knowledge in the field of MRI image recognition for brain tumors, but also providing a detailed comparative analysis that can serve as a reference for medical practitioners to flexibly choose suitable model algorithms based on their cost, demand, etc. conditions.
班级寝室员工综合管理系统
作者名称宋昀昊
作品类别软著登字第13867008号
作品时间2024-09-30
班级寝室员工综合管理系统是采用Java+HTML+Javascript语言开发的一款JavaWeb应用,顾名思义是一套集班级管理、寝室管理与员工管理为一体的数据管理系统,通过用户在前端与系统直观的交互,使得数据的导入导出编辑等操作简单化,视觉直观化,从而降低对数据处理的复杂程度,提高工作效率。员工、班级与寝室信息的增删改查中,考虑到班级和寝室信息一般比较固定,无需做大的改动,故同时具备单条数据的增加、编辑与删除功能,其中编辑功能具备自动拉取数据库数据进行填充,方便编辑指定的信息。员工信息的增删改查中,还特意增加了批量删除和两种不同的批量导入的方法,一种是类似于单条数据添加,但是可以通过点击“增加更多”按钮一次导入多个用户信息,另一种是用户只需获得特定格式的数据文本文件,以每行为一条数据,快捷完成批量导入工作,极大的解决了大量数据导入复杂繁琐的难题,是当前版本重要的创新优势点。
在线订餐系统
作者名称宋昀昊
作品类别软著登字第15089743号
作品时间2025-03-12
本系统基于Spring Boot和Vue 3架构开发,前端采用Vue 3结合Vue Router和Element Plus,后端使用Spring Boot框架搭建,数据持久化层采用MyBatis进行高效数据操作。系统实现了用户与餐饮商家之间的便捷交互,提供实时菜单展示、订单管理、支付处理、多角色管理控制平台分离等功能。通过Vue 3的响应式特性和Element Plus的UI组件,提供流畅的用户体验;后端则通过Spring Boot的高效处理能力,确保系统稳定可靠,满足高并发需求。该订餐系统旨在提升用户体验并优化餐饮商家的运营效率。本系统的优势与创新体现在多个方面。首先,系统支持第三方OAuth登录,若针对个体餐饮场景,接入QQ和微信登录,提供微信无感登录功能,极大简化了用户登录流程,提高了用户体验;若针对企业团餐,支持企业内部账户登录,实现私域流量管理,进一步提升服务的个性化与效率。其次,系统基于云平台部署,用户可以按需下载和更新软件,及时获取功能拓展和系统更新,确保软件始终保持最佳状态,满足不断变化的市场需求。这些创新设计不仅提升了系统的灵活性和便捷性,也增强了用户粘性和系统的可扩展性。













参考资料

1 . Yunhao Song . Applied and Computational Engineering . Beijing, China . EWA Publishing . 2025-05-22 . 75-82

2 . Yunhao Song . IET Conference Proceedings . Hybrid Conference, Portsmouth, UK . IET . 2025-04-18 . 7-12

宋昀昊
基本信息
年龄

20

班级

软件2204班

单位

河南理工大学

词条统计

所属分类学者

浏览次数117

历史版本1

温馨提示

      由于近期经常有客户反馈添加我们客服QQ没有反应,如果您在添加我们QQ客服一直没有通过,或者发送的信息一直没有回复,有可能是QQ消息通知吞吐或延迟,建议添加我们的客服微信进行联系。

注意:请不要使用Safari浏览器浏览本站!否则会有一些不兼容的情况出现比如视频无法播放

1. 本系统正在更新换代中,建设过程较为漫长,请耐心等待。

2. 本站已经与子站 BITCO其它子站点 实现互联互通。

3. 若您有业迪账户,直接登录即可,若子系统没有您的信息,将会提示您激活账户。

4. 如在使用与体验过程中有任何疑问,可与我们联系,我们唯一联系方式如下,建议添加我们客服微信,QQ经常有收不到消息与通知的情况。

微信号:暂未开放       QQ号:点我跳转